Systems

Lecture \#3
 1.3

Homework

- Linear Systems
- Is $y(t)=x(t)^{2}$ a linear system? Prove your point.
- Is $y(t)=t^{2}$ a linear system? Prove your point.
- CT.1.3.1
- ODE
- Solve and plot the solution to the equation: $\mathrm{dx} / \mathrm{dt}+6 \mathrm{x}=0 ; \mathrm{x}(0)=5$; use Matlab to obtain the plot
- Solve and plot the solution to the equation : $d x / d t+6 x=6 ; x(0)=0$; use Matlab to obtain the plot

Homework

- BioSignals
- An heart signal is sampled at the rate $250 \mathrm{~s} / \mathrm{s}$ and is passed to EKG which has an input consisting of a low pass filter. The filter is a resistor and capacitor in series where the output of the filter is taken across the capacitor. What should be the value of the Capacitor if the Resistor is 1 k ohms and the time constant of the filter so that the transient response is completed within $1 / 10$ of the sample time?

Homework Answers

- Linear Systems
- Is $y(t)=x(t)^{2}$ a linear system? Prove your point.
- Is $y(t)=t^{2}$ a linear system? Prove your point.

$$
\begin{aligned}
& y_{a}(t)=x_{a}(t)^{2} ; y_{b}(t)=x_{b}(t)^{2} \\
& y_{\text {sum }}(t)=\left[x_{a}(t)+x_{b}(t)\right]^{2}=x_{a}(t)^{2}+2 x_{a}(t) x_{b}(t)+x_{b}(t)^{2} \neq y_{a}(t)+y_{b}(t) \\
& \text { NOT LINEAR } \\
& y\left(t_{a}\right)=t_{a}{ }^{2} ; y\left(t_{b}\right)=t_{b}{ }^{2} ; \\
& y\left(t_{a}+t_{b}\right)=\left[t_{a}+t_{b}\right]^{2}=t_{a}{ }^{2}+2 t_{a} t_{b}+t_{b}{ }^{2} \neq y\left(t_{a}\right)+y\left(t_{b}\right) \\
& \text { NOT LINEAR }
\end{aligned}
$$

CT1.3.1

```
y(t)=\mp@subsup{A}{c}{}[1+mx
Linear
\mp@subsup{x}{1}{}=>\mp@subsup{A}{c}{}[1+m\mp@subsup{x}{1}{}(t)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi)=\mp@subsup{y}{1}{}(t)
\mp@subsup{a}{1}{}}\mp@subsup{x}{1}{}=>\mp@subsup{A}{c}{}[1+m\mp@subsup{a}{1}{}\mp@subsup{x}{1}{}(t)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi
a}\mp@subsup{a}{1}{}\mp@subsup{y}{1}{}(t)=\mp@subsup{a}{1}{}\mp@subsup{A}{c}{}[1+m\mp@subsup{x}{1}{}(t)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi)=\mp@subsup{A}{c}{}[\mp@subsup{a}{1}{}+m\mp@subsup{a}{1}{}\mp@subsup{x}{1}{}(t)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi)\not=\mp@subsup{A}{c}{}[1+m\mp@subsup{a}{1}{}\mp@subsup{x}{1}{}(t)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi
NOT Linear
Time Invariant
x _ { 1 } ( t ) \Rightarrow A _ { c } [ 1 + m x _ { 1 } ( t ) ] \operatorname { c o s } ( 2 \pi F _ { c } t + \phi ) = y _ { 1 } ( t )
x _ { 1 } ( t - \tau ) \Rightarrow A _ { c } [ 1 + m x _ { 1 } ( t - \tau ) ] \operatorname { c o s } ( 2 \pi F _ { c } t + \phi )
\mp@subsup{y}{1}{}}(t-\tau)=\mp@subsup{A}{c}{}[1+m\mp@subsup{x}{1}{}(t-\tau)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}{t-\tau}+\phi)\not=\mp@subsup{A}{c}{}[1+m\mp@subsup{x}{1}{}(t-\tau)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi
NOT Time Invariant
Causal
y(t)}=\mp@subsup{A}{c}{}[1+mx(\mp@subsup{t}{o}{})]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}\mp@subsup{t}{o}{}+\phi)\mathrm{ only depends on values of }x(\mp@subsup{t}{o}{}
YES Causal
Stable
y(t)=\mp@subsup{A}{c}{}[1+mx(t)]\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi)\mathrm{ since }x(t)\mathrm{ is bounded then }y(t)\mathrm{ is bounded since }\operatorname{cos}(2\pi\mp@subsup{F}{c}{}t+\phi)\mathrm{ and }\mp@subsup{A}{c}{}
are also bounded
YES Stable
```

BME 333 Biomedical Signals and Systems

- J.Schesser

Homework Answers \#2

ODE

- Solve the equation: $\mathrm{dx} / \mathrm{dt}+6 \mathrm{x}=0$
- Solve the equation: $\mathrm{dx} / \mathrm{dt}+6 \mathrm{x}=6$

$$
\begin{array}{ll}
\frac{d x}{d t}+6 x=0 & \frac{d x}{d t}+6 x=6 \\
\text { Choose }: x(t)=K e^{a t} & \text { Choose }: x(t)=K_{1} e^{\alpha t}+K_{2} \\
K \alpha e^{\alpha t}+6 K e^{\alpha t}=0 & K_{1} \alpha e^{\alpha t}+6\left(K_{1} e^{e t}+K_{2}\right)=6 \\
\alpha=-6 & K_{1} \alpha e^{\alpha t}+6 K_{1} e^{\alpha t}=0 ; 6 K_{2}=6 \\
x(t)=K e^{-6 t} & \alpha=-6 ; K_{2}=1 \\
K=x(0) & x(t)=K_{1} e^{-6 t}+1 \\
K_{1}=x(0)-1
\end{array}
$$

Matlab Code

time $=(0: .1: 5)$;
$\mathrm{K}=5$;
Continuous Plot
$\mathrm{x}=\mathrm{K} * \exp (-6 *$ time $)$;
subplot(2,1,1);
plot(time,x);
title('Continuous Plot');
xlabel('Seconds');
$\operatorname{axis}\left(\left[\right.\right.$ time (1) time(length(time)) $\left.\left.\min (\mathrm{x})^{*} 1.1 \max (\mathrm{x})^{*} 1.1\right]\right)$;
$\mathrm{x}=1-\exp \left(-6^{*}\right.$ time $)$;
subplot($2,1,2$);
plot(time, x);
title('Continuous Plot');
xlabel('Seconds');
$\operatorname{axis}\left(\left[\operatorname{time}(1) \operatorname{time}(\operatorname{length}(\operatorname{time})) \min (\mathrm{x})^{*} 1.1 \max (\mathrm{x})^{*} 1.1\right]\right)$;

BME 333 Biomedical Signals and Systems

- J.Schesser

